Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Pers Soc Psychol Bull ; 49(1): 125-137, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35245988

RESUMEN

Previous researches showed that offspring can function as a distal defense, we presented seven studies to further explore the role of offspring in terror management for Chinese people based on their unique fertility culture. Both Studies 1a and 1b found that mortality salience increased desire for children. Study 2 showed that offspring salience reduced the effect of mortality salience on social transgressions judgments. Study 3 revealed that disruption of procreation strivings increased death-thought accessibility. Study 4 demonstrated that conscious responses to worldview threats overwhelmed the unconscious compensation effect of worldview threats on desire for children. Study 5a and Study 5b found that offspring salience decreased death anxiety for parents and nonparents. Taken together, these findings expand terror management theory, emphasizing descendent continuity not only as a related yet separate distal defense from the cultural worldviews, self-esteem, and close relationship but also as a proximal defense, especially for Chinese.


Asunto(s)
Actitud Frente a la Muerte , Autoimagen , Niño , Humanos , Ansiedad , Mecanismos de Defensa
2.
Omega (Westport) ; 87(2): 401-423, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34053344

RESUMEN

This study explores the cognitive structure of death and long-term changes of death cognition after catastrophes for Chinese college students. Two months before Wenchuan earthquake, a week after, a year after, and ten years after, a total of 1507 participants' associated words of death were collected, after clustering high-frequency words' similarity coefficients, results showed that death was represented by four advanced clusters: death contact, death anxiety and its reminders, deathafter, and defense mechanism; a week after earthquake, death anxiety and its reminders, defense mechanism were activated; a year after, death contact, afterdeath were appreciated, death anxiety and its reminders, defense mechanism were underappreciated, this phenomenon still existed even ten years later, which suggests that the earthquake permanently changed their death cognition, and this change stabilized one year later. In addition, this paper provides an effective method to uncover cognitive structure of one certain concept.


Asunto(s)
Terremotos , Trastornos por Estrés Postraumático , Humanos , Estudiantes , China , Trastornos por Estrés Postraumático/psicología
3.
Curr Neurovasc Res ; 19(5): 476-486, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36380401

RESUMEN

OBJECTIVE: Treatment of deep-seated cerebral arteriovenous malformations (AVMs) remains challenging for neurosurgeons or neuroradiologists. This study aims to review the experiences of one center in using multimodality treatment for deep-seated AVMs. METHODS: The AVM database of Xuanwu Hospital, Capital Medical University was searched, and 96 patients who were diagnosed with a deep-seated cerebral AVM between 2010 and 2020 were identified. The following information was collected and analyzed: patients' clinical features, treatment modality used, posttreatment complications, AVM obliteration rate, rebleeding rate, and functional outcome during follow-up. The patients' posttreatment modified Rankin scale (mRS) scores were split into two groups: good outcome (mRS score ≤ 2) and poor outcome (mRS score ≥ 3). Univariate and multivariate logistic regression analyses were applied to test the predictors of clinical outcomes and AVM obliteration. RESULTS: Eighty-eight out of 96 patients (91.7%) presented with initial hemorrhaging. The pretreatment mRS score was ≤ 2 in 80 patients (88.3%) patients and ≥ 3 in 16 patients (16.7%). Limb weakness was present in 42 patients (43.8%). In this sample, 210 hemorrhages occurred during 2056 person-years before diagnosis, yielding an annual hemorrhage rate of 10.2% per person-year. Angiographic obliteration was achieved in 29 patients (30.2%). At the last follow-up, 80 patients (83.3%) had good clinical outcomes, whereas 16 (16.7%) had a deterioration in their clinical presentation following treatment. Multivariate analyses indicated that pretreatment limb weaknesses and a high Spetzler-Martin grade predicted poor clinical outcomes (P = 0.003 and 0.008, respectively). Fewer feeding arteries were a predictor for AVM obliteration (P = 0.034). CONCLUSION: Good outcomes can be achieved through multimodal treatment of deep-seated AVMs. A single supplying artery is a predictor of AVM obliteration. Pretreatment limb weaknesses and high Spetzler-Martin grades predict poor clinical outcomes.

4.
Nat Commun ; 13(1): 4265, 2022 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-35871266

RESUMEN

Upland rice is a distinct ecotype that grows in aerobic environments and tolerates drought stress. However, the genetic basis of its drought resistance is unclear. Here, using an integrative approach combining a genome-wide association study with analyses of introgression lines and transcriptomic profiles, we identify a gene, DROUGHT1 (DROT1), encoding a COBRA-like protein that confers drought resistance in rice. DROT1 is specifically expressed in vascular bundles and is directly repressed by ERF3 and activated by ERF71, both drought-responsive transcription factors. DROT1 improves drought resistance by adjusting cell wall structure by increasing cellulose content and maintaining cellulose crystallinity. A C-to-T single-nucleotide variation in the promoter increases DROT1 expression and drought resistance in upland rice. The potential elite haplotype of DROT1 in upland rice could originate in wild rice (O. rufipogon) and may be beneficial for breeding upland rice varieties.


Asunto(s)
Oryza , Celulosa/metabolismo , Sequías , Estudio de Asociación del Genoma Completo , Oryza/genética , Oryza/metabolismo , Fitomejoramiento
5.
Langmuir ; 38(25): 7815-7824, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35700132

RESUMEN

In this study, a nitrogen-boron codoped carbon layer, Na3V2(PO4)2F3 sample, obtained by using an ionic liquid-acrylic acid copolymer as the nitrogen-boron source was used as the cathode material for sodium-ion batteries. The optimized and modified nitrogen and boron codoped carbon layer, Na3V2(PO4)2F3 (denoted as NVPF-PCNB-20), illustrated better rate capability and cycling performance. The discharge capacities of NVPF-PCNB-20 at 0.5C and 10C were 109 and 90 mAh g-1, respectively, and the capacity retention rate was 93.2% after 100 cycles at 0.5C and 92.8% after 750 cycles at 10C. Through in situ X-ray diffraction analysis of NVPF-PCNB-20, the results show that the modified Na3V2(PO4)2F3 has excellent cycle reversibility. The scanning electron microscopy and transmission electron microscopy images reveal that NVPF-PCNB-20 particles were finer and covered by a uniform coating. The results show that the ionic liquid-acrylic acid copolymer not only make the material dispersion more uniform but also enhance the electronic conductivity and sodium storage performance of Na3V2(PO4)3F3 effectively. This study may provide an effective way to synthesize nitrogen and boron codoped carbon-coated Na3V2(PO4)2F3 with excellent electrochemical performance.

6.
RSC Adv ; 12(22): 14007-14017, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35558847

RESUMEN

Na3V2(PO4)2F3 is a typical NASICON structure with a high voltage plateau and capacity. Nevertheless, its applications are limited due to its low conductivity and poor rate performance. In this study, nitrogen-boron co-doped carbon-coated Na3V2(PO4)2F3 (NVPF-CNB) was prepared by a simple sol-gel method using an ionic liquid (1-vinyl-3-methyl imidazole tetrafluoroborate) as a source of nitrogen and boron for the first time. The morphology and electrochemical properties of NVPF-CNB composites were investigated. The results show that a nitrogen-boron co-doped carbon layer could increase the electron and ion diffusion rate, reduce internal resistance, and help alleviate particle agglomeration. NVPF-CNB-30 exhibited better rate performance under 5C and 10C charge/discharge with initial reversible capacities of 99 and 90 mA h g-1, respectively. Furthermore, NVPF-CNB-30 illustrates excellent cyclic performance with the capacity retention rate reaching 91.9% after 500 cycles at 5C, as well as a capacity retention rate of about 95.5% after 730 cycles at 10C. The evolution of the material's structure during charge/discharge processes studied by in situ X-ray diffraction confirms the stable structure of nitrogen-boron co-doped carbon-coated Na3V2(PO4)2F3. Co-doping of nitrogen and boron also provides more active sites on the surface of Na3V2(PO4)2F3, revealing a new strategy for the modification of sodium-ion batteries.

7.
Analyst ; 146(15): 4803-4810, 2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34241602

RESUMEN

Pattern recognition, also called "array sensing," is a recognition strategy with a wide and expandable analysis range, based on high-throughput analysis data. In this work, we constructed a sensor array for the identification of targets including bacterial pathogens and proteins by using FAM-labeled DNA probes and 2D nanosheet materials. We designed an ordered and extendible DNA library for the collection of recognition probes. Unlike traditional DNA probes with random and massive sequences, our DNA library was constructed following a 5-digit binary number (00000-11111, 0 = CCC, and 1 = TTT), and especially, 8 special symmetry sequences were chosen from the library. Two different nanosheet materials were used as the quencher. When targets were added, the interaction between DNA and the nanosheets was competitively affected, and as a result, the fluorescence signal changed accordingly. Finally, by using our fluorescent sensor array, 17 bacteria and 8 proteins were precisely recognized. We believe that our work has provided a simple and valuable strategy for the improvement of the recognition range and discrimination precision for the development of pattern recognition.


Asunto(s)
Nanoestructuras , ADN/genética , Sondas de ADN/genética , Colorantes Fluorescentes , Biblioteca de Genes , Espectrometría de Fluorescencia
8.
Analyst ; 146(11): 3526-3533, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-33881427

RESUMEN

Since the application of RNA interference (RNAi) is rapidly developing in GMO technology, accurate and sensitive detection of functional RNA molecules was urgently needed, for the safety and functional assessment of RNAi crops. In this work, we developed an electrochemical biosensor for transgene-derived long RNA based on a poly-adenine (polyA) DNA capture probe. The polyA self-assembling monolayer (SAM) provided enhanced interface stability and optimized surface density for the subsequent hybridization of the long RNA molecule. A multiple reporter probe system (MRP) containing 12 reporter probes (RPs) and 2 spacers was applied to open the complex molecular secondary structure and hybridize with the long RNA, with the critical assistance of dimethyl sulfoxide (DMSO). By using 3 addressable RPs, structural recognition was performed among long stem-loop RNA, long dsRNA (no loop), and siRNA. Excellent selectivity was achieved when the extracted total RNA samples were directly analyzed. When reverse transcription recombinase polymerase amplification (RT-RPA) technology was combined, the sensitivity was improved to 10 aM. To the best of our knowledge, this is the first electrochemical biosensor with the excellent capability of quantification and structural analysis of the long RNA of the RNAi GMO. Our work shows great potential in a wide range of RNAi GMO samples.


Asunto(s)
Técnicas Biosensibles , Zea mays , Sondas de ADN , Técnicas Electroquímicas , Poli A , Interferencia de ARN , Zea mays/genética
9.
Angle Orthod ; 91(1): 111-118, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33289799

RESUMEN

OBJECTIVES: To investigate the effects of exendin-4 on orthodontic tooth movement distance, root resorption, and expression levels of osteoclast-related cytokines in a mouse model. MATERIALS AND METHODS: A 10-g NiTi coil spring was placed between the anterior alveolar bone and upper left first molar of 8-week-old male C57BL/6 mice. Twenty microliters of exendin-4 solution (containing 0.2 µg, 4 µg, or 20 µg exendin-4) or phosphate-buffered saline (PBS) were injected on the buccal side of the upper left first molar at 2-day intervals (4 mice per group). Mice were sacrificed on day 12; silicone impressions were taken to record tooth movement distance. The left maxillae of the PBS and 20 µg exendin-4 groups were also excised for histological analysis and quantitative reverse transcription polymerase chain reaction analysis. RESULTS: Orthodontic tooth movement distance was smaller in the 20 µg exendin-4 group than in the PBS group (P < .01). Compared with the PBS group, the 20 µg exendin-4 group showed lower osteoclast number (P < .05), odontoclast number (P < .05), and root resorption surface percentage (P < .05). Relative to maxillae with PBS injections, maxillae with 20 µg exendin-4 injections had lower receptor activator of nuclear factor kappa-B ligand (RANKL) mRNA expression (P < .05), TNF-α mRNA expression (P < .05), and RANKL/osteoprotegerin (OPG) ratio (P < .01). There were no differences in the expression of OPG mRNA. CONCLUSIONS: Exendin-4 inhibits orthodontic tooth movement. Therefore, additional attention is needed for orthodontic patients who receive exendin-4 for diabetes treatment. GLP-1 receptor may be a treatment target for patients with severe root resorption.


Asunto(s)
Diabetes Mellitus , Medicina , Resorción Radicular , Animales , Exenatida , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Osteoclastos , Ligando RANK , Técnicas de Movimiento Dental
10.
Biomed Res Int ; 2020: 7189084, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32923485

RESUMEN

OBJECTIVES: Dipeptidyl peptidase-4 (DPP-4) inhibitors are used as a treatment for type 2 diabetes mellitus and have also recently been applied to enhance bone quality and density, and increase the expression of bone markers. This study aimed to investigate the effect of a DPP-4 inhibitor on orthodontic tooth movement (OTM) and related root resorption in a mouse model. MATERIALS AND METHODS: Mice were randomly divided into three groups: those undergoing OTM with the addition of a DPP-4 inhibitor (30 µg), those undergoing OTM and receiving phosphate-buffered saline (PBS), and those without force loading (control group). OTM was achieved by means of a nickel-titanium closed coil spring that moved the first molar in a mesial direction for 12 days. The distance of OTM was measured using silicone impression. Maxillae were removed for histological analysis or real-time PCR analysis. RESULTS: The distance of OTM and the number of osteoclasts were significantly decreased after administration of the DPP-4 inhibitor, which also significantly suppressed the number of odontoclasts and root resorption after OTM. Furthermore, the mRNA expression of tumour necrosis factor-α (TNF-α) and the receptor activator of nuclear factor kappa-B ligand (RANKL) were decreased in DPP-4 inhibitor-treated mice compared with those receiving PBS and control animals. CONCLUSION: The DPP-4 inhibitor inhibited tooth movement and associated root resorption by blocking the formation of osteoclasts and odontoclasts, respectively. It also appeared to inhibit osteoclastogenesis and odontoclastogenesis by suppressing the expression of TNF-α and/or RANKL.


Asunto(s)
Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Diente Molar/efectos de los fármacos , Resorción Radicular/tratamiento farmacológico , Raíz del Diente/efectos de los fármacos , Animales , Masculino , Maxilar , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Diente Molar/metabolismo , Níquel/farmacología , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteogénesis/efectos de los fármacos , Ligando RANK/metabolismo , Resorción Radicular/metabolismo , Titanio/farmacología , Técnicas de Movimiento Dental/métodos , Raíz del Diente/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
11.
Int J Mol Sci ; 21(17)2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32854340

RESUMEN

Osteoporosis morphology is characterized by bone resorption and decreases in micro-architecture parameters. Anti-osteoporosis therapy targets osteoclasts because bone resorption is a unique function of osteoclasts. Anti-c-fms antibodies against the receptor for macrophage colony-stimulating factor (M-CSF) inhibit osteoclast formation and bone resorption in vitro and in vivo. However, the effect of anti-c-fms antibodies on bone resorption in ovariectomized (OVX) mice is unknown. In this study, we evaluated the effect of anti-c-fms antibodies on osteoclast formation and bone resorption in osteoblast-osteoclast precursor co-culture in vitro and in OVX mice. Osteoblast and osteoclast precursor co-cultures treated with anti-c-fms antibodies showed significantly inhibited osteoclast formation, while cultures without anti-c-fms antibody treatment showed osteoclast formation. However, anti-c-fms antibodies did not change the receptor activator of nuclear factor kappa-B ligand (RANKL) or osteoprotegrin (OPG) expression during osteoblast and osteoclast differentiation in vitro. These results indicate that anti-c-fms antibodies directly affected osteoclast formation from osteoclast precursors in co-culture. OVX mice were treated with intraperitoneal injections of anti-c-fms antibody. The trabecular bone structure of the femur was assessed by micro-computer tomography. The anti-c-fms antibody inhibited osteoclast formation and bone loss compared with PBS-treated OVX mice. These results indicate potential for the therapeutic application of anti-c-fms antibodies for postmenopausal osteoporosis.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Resorción Ósea/prevención & control , Osteoblastos/citología , Osteoclastos/citología , Receptor de Factor Estimulante de Colonias de Macrófagos/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales/farmacología , Resorción Ósea/diagnóstico por imagen , Resorción Ósea/etiología , Resorción Ósea/metabolismo , Hueso Esponjoso/diagnóstico por imagen , Hueso Esponjoso/efectos de los fármacos , Hueso Esponjoso/metabolismo , Diferenciación Celular/efectos de los fármacos , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Femenino , Inyecciones Intraperitoneales , Ratones , Osteoblastos/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Osteoprotegerina/metabolismo , Ovariectomía , Ligando RANK/metabolismo , Microtomografía por Rayos X
12.
Int J Mol Sci ; 21(14)2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32708317

RESUMEN

The process of bone remodeling is the result of the regulated balance between bone cell populations, namely bone-forming osteoblasts, bone-resorbing osteoclasts, and the osteocyte, the mechanosensory cell type. Osteoclasts derived from the hematopoietic stem cell lineage are the principal cells involved in bone resorption. In osteolytic diseases such as rheumatoid arthritis, periodontitis, and osteoporosis, the balance is lost and changes in favor of bone resorption. Therefore, it is vital to elucidate the mechanisms of osteoclast formation and bone resorption. It has been reported that osteocytes express Receptor activator of nuclear factor κΒ ligand (RANKL), an essential factor for osteoclast formation. RANKL secreted by osteocytes is the most important factor for physiologically supported osteoclast formation in the developing skeleton and in pathological bone resorption such as experimental periodontal bone loss. TNF-α directly enhances RANKL expression in osteocytes and promotes osteoclast formation. Moreover, TNF-α enhances sclerostin expression in osteocytes, which also increases osteoclast formation. These findings suggest that osteocyte-related cytokines act directly to enhance osteoclast formation and bone resorption. In this review, we outline the most recent knowledge concerning bone resorption-related cytokines and discuss the osteocyte as the master regulator of bone resorption and effector in osteoclast formation.


Asunto(s)
Resorción Ósea/metabolismo , Citocinas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Osteoclastos/metabolismo , Osteocitos/metabolismo , Osteogénesis/fisiología , Transducción de Señal/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Artritis Reumatoide/metabolismo , Citocinas/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/fisiología , Humanos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Osteogénesis/efectos de los fármacos , Osteoporosis/metabolismo , Osteoprotegerina/metabolismo , Osteoprotegerina/farmacología , Periodontitis/metabolismo , Ligando RANK/metabolismo , Transducción de Señal/efectos de los fármacos
13.
J Vis Exp ; (160)2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32568236

RESUMEN

The osteocyte, once thought to be a passive resident of the bone given the backstage function of sensing mechanical loading, is now brought to the spotlight and has been shown to have multiple major functions like actively modifying the extracellular matrix and forming an endocrine organ with the lacunocanalicular system that encloses it sending messages to distant sites. Owing to the methods that made it possible to test the osteocyte in vitro from isolating primary osteocytes to osteocyte-like cell lines, osteocytes are now experiencing a resounding interest and a surge of knowledge on structure and function. Many aspects of the osteocyte biology and interaction with other molecular components are yet to be discovered. In this protocol, we describe in detail the efficient isolation of primary osteocytes from dmp1-topaz neonatal mouse calvaria, which express the green fluorescent protein in osteocytes, through cell fractionation and subsequently acquiring cultures of primary osteocytes by FACS.


Asunto(s)
Fraccionamiento Celular , Proteínas Fluorescentes Verdes/genética , Osteocitos/metabolismo , Cráneo/citología , Animales , Línea Celular , Matriz Extracelular/metabolismo , Expresión Génica , Ratones
14.
Arch Oral Biol ; 117: 104796, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32544645

RESUMEN

OBJECTIVE: This study aimed to evaluate the effects of tumor necrosis factor (TNF)-α on receptor activator of nuclear factor-κB (RANK) expression in osteoclast precursors in vitro and during orthodontic tooth movement (OTM) in vivo. DESIGN: We assessed whether TNF-α influenced RANK expression levels in osteoclast precursors in vitro by real-time PCR and western blotting. For in vivo experiments, TNF-α was subcutaneously injected into mouse calvariae daily for 5 days. Mice were sacrificed and RANK expression was evaluated by real-time PCR and immunohistochemistry. For OTM, a nickel-titanium closed-coil spring was fixed between the upper incisors and upper-left first molar to move the first molar in the mesial direction in wild-type (WT) and TNFR1/TNFR2-deficient (TNFRsKO) mice. After OTM, the number of RANK-positive cells on the compression side was evaluated by immunohistochemistry. RESULTS: RANK levels were enhanced in TNF-α-treated osteoclast precursors in vitro. RANK mRNA expression levels and the number of RANK-positive cells were higher in TNF-α-injected mice than in phosphate-buffered saline-injected mice. RANK-positive cells increased on the compression side of the alveolar bone in WT mice because of the mechanical loading. In addition, the number of RANK-positive cells on the compression side was significantly higher in WT mice than in TNFRsKO mice after OTM. CONCLUSION: These results suggest that TNF-α induces RANK expression in vitro and at baseline in vivo, as well as on the compression side during OTM.


Asunto(s)
Osteoclastos/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Técnicas de Movimiento Dental , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Ratones
15.
J Colloid Interface Sci ; 575: 406-415, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32388287

RESUMEN

Metal-free carbons as durable high-performance oxygen reduction electrocatalysts, deemed to be promising alternatives to the platinum-group metals (PGMs), are vital to large-scale commercialization of fuel cells. Herein, a solvent-free synthetic strategy has been proposed to prepare N-doped nanoporous metal-free carbonaceous materials originating from various types of plant residues (papaya skin - fruit, bamboo shoot - forestry, wheat straw - farming and cabbage stem - vegetable). The optimal metal-free carbon, possessing maximized reaction surface area and optimized distributions of nanopore structures and nitrogen species, can function as the durable high-performance pH-universal ORR electrocatalyst, reaching or surpassing the benchmark 20% Pt/C catalyst within the wide scope of pH. This paper substantiates the solvent-free, scalable and bio-universal preparation approach to converting various biomass wastes into durable high-performance pH-universal ORR carbonaceous catalysts, capable of expanding the repertoire of cathode catalysts employed by fuel cells that demand diverse pH environments.


Asunto(s)
Carbono/química , Nanopartículas/química , Oxígeno/química , Catálisis , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
16.
Int J Mol Sci ; 21(3)2020 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-32046264

RESUMEN

Interleukin (IL)-33 is a member of the IL-1 family, which acts as an alarmin. Several studies suggested that IL-33 inhibited osteoclastogenesis and bone resorption. Tumor necrosis factor-α (TNF-α) is considered a direct inducer of osteoclastogenesis. However, there has been no report regarding the effect of IL-33 on TNF-α-induced osteoclastogenesis and bone resorption. The objective of this study is to investigate the role of IL-33 on TNF-α-induced osteoclastogenesis and bone resorption. In an in vitro analysis of osteoclastogenesis, osteoclast precursors, which were derived from bone marrow cells, were treated with or without IL-33 in the presence of TNF-α. Tartrate-resistant acid phosphatase (TRAP) staining solution was used to assess osteoclast formation. In an in vivo analysis of mouse calvariae, TNF-α with or without IL-33 was subcutaneously administrated into the supracalvarial region of mice daily for 5 days. Histological sections were stained for TRAP, and osteoclast numbers were determined. Using micro-CT reconstruction images, the ratio of bone destruction area on the calvariae was evaluated. The number of TRAP-positive cells induced by TNF-α was significantly decreased with IL-33 in vitro and in vivo. Bone resorption was also reduced. IL-33 inhibited IκB phosphorylation and NF-κB nuclear translocation. These results suggest that IL-33 inhibited TNF-α-induced osteoclastogenesis and bone resorption.


Asunto(s)
Resorción Ósea/inducido químicamente , Resorción Ósea/tratamiento farmacológico , Interleucina-33/farmacología , Interleucina-33/uso terapéutico , Osteoclastos/citología , Osteoclastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Animales , Técnica del Anticuerpo Fluorescente , Immunoblotting , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Osteoclastos/metabolismo , Fosforilación/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
PLoS One ; 14(10): e0223989, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31618254

RESUMEN

Compressive force during orthodontic tooth movement induces osteoclast formation in vivo. TNF-α plays an important role in mouse osteoclast formation and bone resorption induced by compressive force during orthodontic tooth movement. Stromal cells, macrophages and T cells take part in TNF-α-induced osteoclast formation in vitro. Root resorption caused by odontoclasts is a major clinical problem during orthodontic tooth movement. In this study, we determined the cell type targeted by TNF-α during compressive-force-induced osteoclast and odontoclast formation to elucidate the mechanism of bone and root resorption in vivo. An orthodontic tooth movement mouse model was prepared with a nickel-titanium closed coil spring inserted between the maxillary incisors and the first molar. Using TNF receptor 1- and 2-deficient (KO) mice, we found that osteoclast and odontoclast formation was mediated by TNF-α in orthodontic tooth movement. We generated four types of chimeric mice: wild-type (WT) bone marrow cells transplanted into lethally irradiated WT mice (WT>WT), KO bone marrow cells transplanted into lethally irradiated WT mice (KO>WT), WT bone marrow cells transplanted into lethally irradiated KO mice (WT>KO), and KO marrow cells transplanted into lethally irradiated KO mice (KO>KO). Using anti-CD4 and anti-CD8 antibodies, T cells were eliminated from these mice. We subjected these chimeric mice to orthodontic tooth movement. Orthodontic tooth movement was evaluated and tartrate-resistant acid phosphatase-positive cells along the alveolar bone (osteoclasts) and along the tooth root (odontoclasts) were counted after 12 days of tooth movement. The amount of orthodontic tooth movement, and the number of osteoclasts and odontoclasts on the compression side were significantly lower in WT>KO and KO>KO mice than in WT>WT and KO>WT mice. According to these results, we concluded that TNF-α-responsive stromal cells are important for osteoclast and odontoclast formation during orthodontic tooth movement.


Asunto(s)
Osteoclastos/citología , Células del Estroma/citología , Migración del Diente/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Osteoclastos/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/deficiencia , Receptores Tipo II del Factor de Necrosis Tumoral/deficiencia , Células del Estroma/metabolismo
18.
J Immunol Res ; 2019: 9716758, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31341915

RESUMEN

Osteocytes are abundant cells in bone, which contribute to bone maintenance. Osteocytes express receptor activator of nuclear factor kappa-B ligand (RANKL) and regulate osteoclast formation. Orthodontic tooth movement (OTM) occurs by osteoclast resorption of alveolar bone. Osteocyte-derived RANKL is critical in bone resorption during OTM. Additionally, tumor necrosis factor-α (TNF-α) is important in osteoclastogenesis during OTM. Sclerostin has been reported to enhance RANKL expression in the MLO-Y4 osteocyte-like cell line. This study investigated the effect of TNF-α on sclerostin expression in osteocytes during OTM. In vitro analysis of primary osteocytes, which were isolated from DMP1-Topaz mice by sorting the Topaz variant of GFP-positive cells, revealed that SOST mRNA expression was increased when osteocytes were cultured with TNF-α and that RANKL mRNA expression was increased when osteocytes were cultured with sclerostin. Moreover, the number of TRAP-positive cells was increased in osteocytes and osteoclast precursors cocultured with sclerostin. In vivo analysis of mouse calvariae that had been subcutaneously injected with phosphate-buffered saline (PBS) or TNF-α revealed that the number of TRAP-positive cells and the percentage of sclerostin-positive osteocytes were higher in the TNF-α group than in the PBS group. Furthermore, the level of SOST mRNA was increased by TNF-α. As an OTM model, a Ni-Ti closed-coil spring connecting the upper incisors and upper-left first molar was placed to move the first molar to the mesial direction in wild-type (WT) mice and TNF receptor 1- and 2-deficient (TNFRsKO) mice. After 6 days of OTM, the percentage of sclerostin-positive osteocytes on the compression side of the first molar in TNFRsKO mice was lower than that in WT mice. In this study, TNF-α increased sclerostin expression in osteocytes, and sclerostin enhanced RANKL expression in osteocytes. Thus, TNF-α may play an important role in sclerostin expression in osteocytes and enhance osteoclast formation during OTM.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Osteocitos/metabolismo , Osteogénesis , Ligando RANK/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Proteínas Adaptadoras Transductoras de Señales , Animales , Línea Celular , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteocitos/citología , Osteocitos/inmunología , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Técnicas de Movimiento Dental
19.
PLoS One ; 14(6): e0214260, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31216288

RESUMEN

Orthodontic relapse after orthodontic treatment is a major clinical issue in the dental field. However, the biological mechanism of orthodontic relapse is still unclear. This study aimed to establish a mouse model of orthodontic retention to examine how retention affects the rate and the amount of orthodontic relapse. We also sought to examine the role of osteoclastogenesis in relapse using an antibody to block the activity of M-CSF, an essential factor of osteoclast formation. Mice were treated with a nickel-titanium closed-coil spring that was fixed between the upper incisors and the upper-left first molar to move the first molar in a mesial direction over 12 days. Mice were randomly divided into three groups: group 1, no retention (G1); group 2, retention for 2 weeks (G2); and group 3, retention for 4 weeks (G3). In G2 and G3, a light-cured resin was placed in the space between the first and second molars as a model of retention. Orthodontic relapse was assessed by measuring changes in the dimensions of the gap created between the first and second molars. To assess the activity and role of osteoclasts, mice in G3 were injected with anti-c-Fms antibody or PBS, and assessed for changes in relapse distance and rate. Overall, we found that a longer retention period was associated with a slower rate of relapse and a shorter overall amount of relapse. In addition, inhibiting osteoclast formation using the anti-c-Fms antibody also reduced orthodontic relapse. These results suggest that M-CSF and/or its receptor could be potential therapeutic targets in the prevention and treatment of orthodontic relapse.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Factor Estimulante de Colonias de Macrófagos/antagonistas & inhibidores , Osteogénesis/efectos de los fármacos , Movilidad Dentaria/tratamiento farmacológico , Animales , Anticuerpos Monoclonales/farmacología , Células Cultivadas , Modelos Animales de Enfermedad , Factor Estimulante de Colonias de Macrófagos/metabolismo , Masculino , Ratones , Osteoclastos/citología , Osteoclastos/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Movilidad Dentaria/metabolismo , Resultado del Tratamiento
20.
Artículo en Inglés | MEDLINE | ID: mdl-30949128

RESUMEN

Docosahexaenoic acid (DHA) is an n-3 fatty acid that is an important structural component of the cell membrane. DHA exerts potent anti-inflammatory effects through G protein-coupled receptor 120 (GPR120), which is a functional receptor for n-3 fatty acids. DHA also regulates osteoclast formation and function. However, no studies have investigated the effect of DHA on inflammation-induced osteoclast formation in vivo. In the present study, we investigated whether DHA influences osteoclast formation, bone resorption and the expression of osteoclast-associated cytokines during lipopolysaccharide (LPS)-induced inflammation in vivo, and then we elucidated the underlying mechanisms by using in vitro experiments. In vitro experiments revealed both receptor activator of NF-kB ligand (RANKL)- and tumor necrosis factor-α (TNF-α)-induced osteoclast formation was inhibited by DHA. Supracalvarial administration of LPS with or without DHA was carried out for 5 days and then the number of osteoclasts, ratio of bone resorption pits and the level of type I collagen C-terminal cross-linked telopeptide were measured. All measurements were significantly lower in LPS+DHA-co-administered mice than LPS-administered mice. However, this DHA-induced inhibition was not observed in LPS-, DHA-, and selective GPR120 antagonist AH7614-co-administered mice. Furthermore, the expression of RANKL and TNF-α mRNAs was lower in the LPS+DHA-co-administered group than in the LPS-administered group in vivo. TNF-α mRNA levels were decreased in macrophages co-treated with LPS+DHA compared with cells treated with LPS in vitro. In contrast, RANKL mRNA expression levels from osteoblasts co-treated with DHA and LPS in vitro were equal to that in cells treated with LPS alone. Finally, the inhibitory effects of DHA on osteoclast formation in vitro were not observed by using osteoclast precursors from GPR120-deficient mice, and inhibition of LPS-induced osteoclast formation and bone resorption by DHA in vivo was not observed in GPR120-deficient mice. These results suggest that DHA inhibits LPS-induced osteoclast formation and bone resorption in vivo via GPR120 by inhibiting LPS-induced TNF-α production in macrophages along with direct inhibition of osteoclast formation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...